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Abstract

In this paper, two rate-dependent interface models are formulated and discussed. The models are conceived for the
simulation of debonding degradation in polymer matrix composites, the most meaningful example of application being
the simulation of rate-dependent delamination. Numerical time integration and the introduction in a finite element
analysis program are described in detail; numerical examples and a comparison with experimental results are pre-
sented. © 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Interface degradation represents a major damage phenomenon in various situations, among them
debonding and delamination in composites (Garg, 1988), fracture in rock joints and masonry (Satmani
Naresh et al., 1996), decohesion of films from substrates (Jensen et al., 1990).

In order to simulate interface degradation, and more generally complex fracture propagation processes
(see e.g. Pandolfi et al. (1999) for a recent application), it is made increasingly use in the literature of in-
terface models relating tractions to displacement discontinuities along a surface of potential decohesion.

The subject of the present paper is the development of interface models for the simulation of time-
dependent delamination. It is widely recognised (Bradley, 1989) that the major contribution to delamin-
ation fracture resistance is given by the damage developing in the matrix-rich interlaminar layer. This
fact justifies the application of interface models to the study of delamination (Allix and Ladeveze, 1992;
Corigliano, 1993; Schellekens and De Borst, 1993; Crisfield et al., 1997). By assuming the dissipative
processes during fracture to be localised at the interface between laminae, numerical simulations may, in the
first approximation, be conducted using conventional elements to represent the composite and replacing the
interlaminar layer by interface elements. These have an appropriate evolution law of internal variables to
simulate the failure process.
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When, as in the present paper, the phenomenon of delamination in polymer matrix composites is
concerned, the viscous properties of the polymer can influence the global response to fracture and cause the
type and extent of damage to depend on the time scale of load application (Popelar and Kanninen, 1980;
Aliyu and Daniel, 1985; Smiley and Pipes, 1987; Friedrich et al., 1989; Hashemi et al., 1990). For example,
the crack energy required to initiate and grow the delamination at any given speed, as well as the energy
available at the crack tip, are functions of local visco-elastic properties, and significant load history effects
may arise.

Experimental data obtained in Frassine et al. (1993, 1996) and Frassine and Pavan (1995), on two high-
performance thermoplastic-matrix composites have shown that delamination fracture toughness may be
remarkably rate sensitive, and that either increasing or decreasing values for increasing crack speed may be
found.

To describe such behaviour using interface elements, the time dependence of the internal damage law has
to be modified accordingly. Among all possible damage laws, which could reproduce the particular be-
haviour, one has to choose a law being consistent with the physics of the fracture process. An attempt has
been done in Corigliano et al. (1997a,b, 1998), where the actual rate dependence of the yield stress of the
matrix has been incorporated into the damage law of the interface model, by developing a viscoplastic
softening interface law.

The main purposes of the present paper, which is the prosecution of the above referenced previously
published works, are the following: formulate two time-dependent interface models to be used in the study of
time-dependent delamination; describe in detail the behaviour of the models first by analytical computa-
tions, then by numerical integration of the governing equations; discuss the numerical implementation of the
models in a finite-element non-linear analysis program; show the potentiality of the proposed modelling
through finite element simulations of delamination crack propagation in interlaminar fracture specimens.

The summary of the paper is as follows: In Section 2, two time-dependent interface models are for-
mulated; the first one is viscoplastic, while the second is time-dependent elastic damage. Section 3 concerns
the computation of the analytical responses in pure mode of the proposed interface models; these are useful
for comparison with the results of numerical implementation and for parameter identification. In Section 4,
the numerical time integration of the interface models, carried out by means of a Runge-Kutta algorithm,
is described; the numerical response of the models is studied at varying model parameters and loading
conditions. The finite element implementation is discussed in Section 5, while in Section 6, some examples
of numerical simulations of double cantilever beam and end notched flexure specimens are presented.
Section 6 is concluded with a comparison between numerical and experimental results concerning a double
cantilever beam test.

2. Formulation of two time-dependent interface models

The use of interface models for the simulation of fracture processes is becoming more and more popular.
A typical context in which interfaces have recently been used is that of composite delamination. Other more
complex fracture phenomena are those of fragmentation and impact, in those cases for some authors, the
use of interfaces represents the only way to obtain a complete numerical simulation.

In this section, two interface models with a time-dependent response are proposed; they are formulated
on the basis of previous works (Corigliano et al., 1997a,b, 1998) mainly for the simulation of time-
dependent composite delamination (Aliyu and Daniel, 1985; Frassine et al., 1993); Frassine and paran,
1995); Friedrich et al., 1989). The model proposed could also be applied in other contexts, e.g. as done by
Bazant and Beissel (1994), Satmani Naresh et al. (1996) and Netmes and Spéciel (1996).

Before starting the description of the models, it is worth specifying that an interface model is here
conceived as a relation between the traction vector t, relevant to a surface I', which separates a solid into
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two parts @t and Q~, and the vector of displacement jumps or displacement discontinuities [u] representing
the possible relative movements of the two parts of the solid (Fig. 1). The interface is therefore a useful
schematisation for the introduction of displacement discontinuities, i.e. cracks, in the solid. Interface
models can also be considered as generalisations of the cohesive crack concept.

When composite delamination is concerned, the laminate is conceived as a stacking sequence of layers
and interfaces (Fig. 2), the interface acts as a zero-thickness medium which transfer stresses from one layer
to the adjacent. The interface can have orthotropic properties, with the principal orthotropic directions
depending on the fibre directions of adjacent layers (Fig. 2). With the above schematisation, it is possible to
describe the behaviour of an interface zone with very small thickness and to attribute to it different me-
chanical responses.

The models introduced in Sections 2.1 and 2.2 are formulated following the reference frame of Fig. 2.
Hence, traction in direction 3 activates a mode-I delamination mechanism, while tractions in directions 2
and 3 are related to mode II and III delamination, respectively.

2.1. Viscoplastic model

A viscoplastic interface model is first introduced, governed by the following relations:
[u] = [u]® + [u]"", (1)

Q.

< ©
— >

Fig. 1. Interface I' in a solid Q.

ply +

interface

Fig. 2. Schematic representation of a laminate.
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t=K[u*, K=diag(K;), i=1,2,3, (2)
™ = 576 L), ®)
f(t )= \/alt%+a2t§+a3<t3>i — 1+ hi, 4)
o= [ () () (5
(o), =0 if >0 (o), =0 if o <O. (6)

In Eq. (1), the additivity of elastic [u]® and viscoplastic [u]'” (i.e. irreversible) displacement discontinuities
is assumed. The elastic behaviour of the interface is governed by relations (2), where interface elastic
stiffnesses K;, with the dimension of a force over a length cube, are introduced. Relation (3) governs the
evolution of viscoplastic displacement discontinuities through a law of Perzyna kind (Perzyna, 1966), where
y and N are model parameters. f(t,A) is a viscoplastic potential defined in Eq. (4), function of interface
tractions ¢; and of a viscoplastic multiplier 4, defined in Eq. (5), where t denotes time. Parameters «; are
related to the values of tractions at the beginning of the inelastic behaviour, while parameter / govern the
hardening or softening character of the model in point. Relations (6) clarify the meaning of the symbol
(e) ., positive part of . The positive part of the traction normal to the interface is introduced in Eq. (4) in
order to take into account a unilateral effect, thus avoiding development of viscoplastic displacement
discontinuities in the normal direction when the interface is compressed. In other words, the component
[a]3" of the viscoplastic displacement discontinuity rate vector is zero when traction #; is negative.

The interface model introduced depends on nine parameters, which have the following dimensions:

Ki [F/LSL a; [L4/F2]7 i:112137
h(1/L), v [F/LT], N,
where F, L, T denote force, length and time, respectively.

In Fig. 3, the initial elastic domain is represented in the space of interface tractions. When the parameter
h is positive, a softening effect is introduced in the model and progressive interface degradation can be

At3

1/\/33
t
1/\/31 1/\/a2 >

t;

Fig. 3. Initial elastic domain for the viscoplastic interface.
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described, this circumstance is exploited here in order to simulate delamination and debonding in com-
posites.

2.2. Time-dependent damage model

As a possible alternative to the viscoplastic interface model above introduced, an anisotropic time-de-
pendent elastic-damage model can be used, as defined by the following relations:

h=0-D)Ki[u,, t=(1-D)Ksul,, (7a)
ty = (1 = D3)Ky ([uly), + K5 ([ul5) (7b)
n=K L=, =K () ®)
FY,0) = Varti +aYs +asYs — 1+ hi, (9)
D, = yi<f(Y,A)>i, =123, (10)

Eq. (7) describe the clastic-damage behaviour of the interface; parameters K; play the role of initial
interface stiffnesses; D; are three damage variables which affect the behaviour in the three different damage
modes. It is to be noticed that in Eq. (7b), a unilateral effect in the direction 3 is introduced by distin-
guishing the elastic behaviour depending on the sign of the normal displacement discontinuity. For sim-
plicity it will be assumed in the following: Ki = K; . The variables Y; defined in Eq. (8) are energetically
conjugate to the damage variables and coincide with the elastic energies associated to the single modes. The
evolution of the three damage variables is governed by relations (9)—(11). In Eq. (9) the potential function
7 (Y, %) is defined, depending on Y and on the variable A, which is a scalar measure of the total cumulated
damage. Parameters a; are related to the values of energies Y; at the beginning of the inelastic behaviour,
while parameter 4 influences the evolution of the function f (Y, 7). The damage variables rates D, are given
in Eq. (10), where the positive part of (Y, ) appears together with material parameters j;, and N.

It is worth noticing that the above choice concerning the evolution of damage variables is a possibility
among others. Eq. (10) defines the damage variables starting from the same potential, only the scalar
multipliers §, are different for the three variables D;. This implies that the elastic stiffnesses are degraded in
different proportions.

The damage interface model introduced above depends on nine parameters (when K3~ = K7'); these have
now the following dimensions:

K [F/L), & [L/F), =123,
h, 7 11/T), N.

It is interesting to note that in the space of displacement discontinuities, the initial elastic domain has the
same shape as that of the viscoplastic model in the space of interface tractions.

A softening effect, and therefore the possibility to describe progressive interface degradation, is intro-
duced in the model provided that damage variables always increase, thus satisfying also a thermodynamical
requirement. This last circumstance is verified if parameters J are positive.
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Both the interface models introduced above depend on nine model parameters. The large number of
parameters and the consideration that direct tests on interfaces cannot be carried out, make the problem of
parameter identification in the case of interface models a difficult task. In Corigliano (1993), Allix et al.
(1995) and Allix and Corigliano (1996), the identification issues for interface problems have been already
discussed. More recently, in Corigliano and Mariani (1999), an inverse approach based on the use of
Kalman filter has been applied for the identification of time-dependent damage models.

In the present paper, model parameters are assumed to be known, in the case of parametric studies and
purely numerical simulations, possibly found on the bases of the identification procedures described in the
above referenced papers. In Section 6.3, a comparison between experimental and numerical results is shown
and material parameter identification is briefly described.

3. Analytical response in pure mode

The response in pure mode for both models of Sections 2.1 and 2.2 can be obtained analytically for
particular choices of parameters. This can be useful for the complete understanding of the model behav-
iour, for the purpose of parameter identification and for the validation of numerical procedures.

3.1. Viscoplastic model

The response of the viscoplastic interface model is sought for an assigned history of total displacement
discontinuity [u] = p(t), by specialising Eqs. (1)—(6) to the case of pure mode. Observe that a pure-mode
response can be obtained by maintaining in Egs. (1)—(5), one component of displacement discontinuity and
traction only. Pure mode I, II or III are obtained by attributing to parameters ¢ and K, the index 3, 1, 2,
respectively (Fig. 2); in this and in the following section the index i will be dropped for brevity.

After the specialisation to pure-mode, a first-Order Differential Equation (ODE) can be obtained in the

unknown viscoplastic displacement discontinuity [u]'.

[i]"® = yv/a(Kv/ap(t) — 1 — (Kva— h)u]™)". (12)

In the special case N = 1, the above equation becomes linear and can be explicitly integrated; the result of
the integration is given in the group of Egs. (13) in the case of a linear history of total displacement dis-
continuity p(t) = vt.

N=1, [ =p) =0,
t(t) = Kuvr, 0< <10,
{I,‘(r):Clexp(C4(r—r0))—|—C27:—|—C37 70 <1< T,
B K B Kvh
Y okya—n? T (Kva—hy (13)
¢ = MR EVKVE ) e~ yva(kva - n),
7(Kva—h)
1 - G
rozm, Tcz—a-

At the limit, for the imposed velocity v — 0, or for the viscosity parameter y — oo, the response ¢ = #([u])
in pure mode governed by relations in (13), obtained with N =1, results in



A. Corigliano, M. Ricci | International Journal of Solids and Structures 38 (2001) 547-576 553

=) = (= )1 -l (14)

The above relation coincides with the response in pure mode of a time-independent elasto-plastic in-
terface model governed by the following set of relations:
dF .
t=K([u] — [u]'® )P =—1
(W= W™, "=
F=+vat—1+h/ai<0, 120, F1=0.

(15)

The analytically computed response in pure mode of Egs. (13) is shown at varying imposed velocity of
displacement discontinuity in Fig. 4a, and at varying parameter /4, for an imposed velocity of 0.1 mm/s, in
Fig. 4b. The parameters chosen for the model are as follows:

K =100000 N/mm*, a=1/80> mm*/N? /=120 mm !,
y =180 N/mms, N =1.

The above parameters are assumed to be a priori known, found on the bases of some identification pro-
cedure as those described in the papers referenced at the end of Section 2.

An important parameter for the behaviour of the model is the value of the area under the traction—
displacement discontinuity plot; this in fact coincides with the fracture energy. As can be appreciated from
Fig. 4a, the fracture energy predicted by the model increases at increasing imposed velocity of displacement
discontinuity. Observe that at the limit for the imposed velocity v — 0, the fracture energy with the above
parameters is equal to 0.333 N/mm and coincides with that of the time independent model governed by Eq.
(15). This value can be found by computing the area under the traction—displacement discontinuity plot in
pure-mode response of the time-independent model (15), obtained applying a monotonically increasing
history of displacement discontinuity.

(a) (b)

500 100
i —&— h=30 [1mm]
80
400 ---- h=60
1 | —— h=120
7 30 T 807, h =240
= 1 —5— v=10. [mm/sed] = 1!
|
2 o904 /0 - v= L 404
i v= 01 i
wod F-o — — - v=001 o0 |
0 — 7 0 ] ‘ |
0.000 0.004 0.008 0012 0016 0.020 0.00 0.01 0.02 0.03 0.04
u3  [mm] u3  [mm]

Fig. 4. Analytically computed traction-displacement discontinuity pure-mode response for the viscoplastic interface. (a) Response at
varying imposed displacement discontinuity velocity, # =120 mm~' (b) Response at varying parameter s, imposed velocity
v=0.1 mm/s.
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3.2. Time-dependent damage model

As done for the viscoplastic model, the response of the time-dependent damage interface model is sought
for assigned history of total displacement discontinuity [u] = p(t); by specialising Egs. (7)—(11) to the case
of pure mode, a first-order differential equation can be obtained in the unknown scalar damage variable D:

N
. aK ~
D=7 1/%p(r)—1+hD . (16)

When the parameter N = 1, the above equation reduces to a first-order linear ODE which can be explicitly
integrated, the results are grouped in relations (17) shown below. Traction—displacement discontinuity in
pure mode under monotonic loading for the damage model is as follows:

-1, [u](r) — v,

{ t(r) = 0 <7< 1,
t(t) = Clrexp(C4(r—To))+C212+C3T, <1< 1,
Kv* JaK Kv* JaK
Q:—A—z}2 - Cr=— \/a_v
e V2 h V2 (17)
1 v JaK .
C :K 177 A —_— C — Ah
3 v h+§)h2 5 | 4 = 7h,
12
"o Vak

The expression of 7., i.e. the time instant corresponding to zero traction, is not given in Eq. (17), due to
the fact that an explicit expression cannot be found easily. For low velocities and when 4 < 0, a useful
approximate expression is 7. = —C;/C,.

At the limit for the imposed velocity v — 0, or for the viscosity parameter y — oo, the response ¢ = #([u])
in pure mode governed by relations in Eq. (17), obtained with N = 1, results in

1 ak

(= i) =K (1= (1= /5 |l | 1 (18)

The above response coincides with that of a time-independent elastic-damage interface model governed by

the following relations:
=K(1-D)[u. Y =IK[u],

; . i .. (19)

F=+vaY -1+hD<0, D>0, FD=0.

The analytically computed response in pure mode is shown at varying imposed velocity of displacement
discontinuity in Fig. 5a, while in Fig. 5b it is shown at varying parameter / for an imposed velocity v = 0.1
mm/s. The parameters chosen for the model are the following:

= 100000 N/mm?®, a=3125mm/N, h=—-4, 7y=1801/s, N=1.

As noticed for the viscoplastic interface model, the above parameters are assumed to be a priori known,
found on the bases of some identification procedure as those described in the papers referenced at the end of
the previous section.
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Fig. 5. Analytically computed tractlonﬂilsplacement discontinuity pure-mode response for the damage interface: (a) Response at
varying imposed displacement discontinuity velocity h=—4.(b) Response at varying parameter h, imposed velocity v = 0.1 mm/s.

Note that with the above parameters, at the limit for the imposed velocity v — 0, the fracture energy is
equal to 0.333 N/mm and therefore coincides with that shown by the viscoplastic interface model of Fig. 4a
and b.

The responses in Fig. 5a show clearly that the fracture energy strongly increases at increasing dis-
placement discontinuity velocity.

4. Numerical time-integration

The interface models presented in Section 2 must be numerically integrated in time for their introduction
in a non-linear step-by-step analysis.

The strategy here chosen is of a Runge-Kutta kind for both models of Sections 2.1 and 2.2 and is
detailed in the following of this section.

The time history is subdivided in time steps At = 7,,; — 1,, at the beginning of each step all quantities are
known. The solution of the single step consists in finding all unknown quantities at the time instant 7, by
giving as input the increment of the total displacement discontinuity in the step. Depending on the sign of a
trial function /'@, the step is elastic or non-linear. Indices n and n + 1 denote quantities computed at time
instants T, or T,,, respectively.

4.1. Viscoplastic model

The elastic case is governed by the relations given below:

if f(ty, 2n) <O
WS =l A = A (20)
t1 = K([u[u];?).
The non-linear case implies the development of viscoplastic displacement discontinuities. A mid-point
approximation governed by parameter ¢ is introduced for the unknowns viscoplastic displacement
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discontinuity [u],?, and for the viscoplastic multiplier 4, . The corresponding rate quantities [u],"  and It
are expanded in a Taylor series up to the first order.
The resulting equations governing the non-linear phase for the time step are given here below:

if f(t,, 4,) >0,
to = K([ul,,, —[]}h,),
%, = ]+ Ac((1 - 9)[]

Dot = Iy + Ar((l )+ mm), 9 € 0,1],

VALY (21)
Y]

[ﬁ]v"=~/f”(t,)»)aa—{, A= /o] ).

By making use of Eqgs. (21), it is possible to obtain an explicit expression for the traction vector t at the
end of the time step (Appendix A)

ol ),

n

[m&=wf+0§”

t. =t,+ K Alu] — Aq,. (22)
Matrix K, and vector Aq,, in the above Eq. (22) are defined as follows:

T

Kr = < Oty ) =K’ = (I+ AtKAB) 'K, (23a)
a[u]n+1
T -1

([u];") ofu]*? o™ |\’

A=|1—-At9C~—— B=|—— = 23
9 C i , o , C o/ , (23b, ¢)

Aq, = AK ([u];p + AwAc;'.n). (23d)

Matrix K’ plays the role of tangent matrix, as specified in Eq. (23a).

In order to check the validity of the above integration procedure, in Fig. 6 a comparison is made between
the numerically integrated response and the analytical results of Section 3.1 for the case N = 1. The two
values 0 and 0.5 of the integration parameter v are chosen. In Fig. 6a, the numerical response is computed
with a time step At = 0.001 s, this corresponds to about 1/90 of the critical time instant, i.e. the instant
corresponding to zero traction. It can be observed that the response for ¥ = 0, i.e., a completely explicit
one, is highly oscillating. The oscillations disappear in Fig. 6b where the numerical response is computed
with a time step At = 0.0001 s, which corresponds to about 1/900 of the critical time step.

4.2. Time-dependent damage model

In the case of the time-dependent damage model, the elastic phase is governed by relations given below:

if (Y, 2) <0,

DiHl = Di,,a j~n-¢—l = ;“nv (24)

Lint1 :K,(l _Din)[u][mw Yi,,+] = %Kl[u]lza i= 17273'
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(a) (b)

analytic solution

%0 analytic solution 7 —o0—0=0, Ar=0.0001 [s]

80 —6—0=0, At=0001 [s] 80| --@--0=0.5, At=0.0001 [s]
70.] ----0=0.5,At=0.001 [s] 70
60— 60—
—. 50 _ 50
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S 40 S 40|
30 = 304
20+ 20~
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0 1 T T T T T T T i * ] 0 T T T T T T T T T ]

_1007.)00 0.002 0.004 0.006 0.008 0.010 _10@000 0.002 0.004 0.006 0.008 0.010
[u] [mm] [u] [mm]

Fig. 6. Viscoplastic interface model. Comparison between analytic solution and numerical time integrated pure-mode response. Im-
posed displacement discontinuity velocity v = 0.1 mm/s: (a) 90 time steps and (b) 900 time steps.

The positive part <[u] 3> .» which appears in Eqs. (7) and (8) for the purpose of modelling the unilateral
effect, does not show up in this section only for notation convenience.

When the non-linear case is activated, damage variables evolve. In this case a mid-point approximation
governed by parameter ¢ is introduced for the unknown damage variables D; , and for the damage
multiplier 4,,,. A Taylor series expansion is used for their rate counterparts D, ., and Jni1. The resulting set
of equations is given below; note that in Eq. (25), the three damage variables (and the corresponding rates)
are collected in the diagonal matrices D, (D, ) for notation convenience. Elastic—viscoplastic case for the
time-integrated viscoplastic model is as follows:

if (Y, ) >0,

n+l = (I — n+])K|: ]n+l7 D= dlag( ,'), K= dlag(K,), i= 1,27 3,
D,H,l D +AT((1 ) +19Dn+1)
it = P+ AT(1 = 0) Ay + Dhpsr), 0 €[0,1],
T
: oD oD
D, =D, + (aY ) AY + (a} > A, (25)
oil\"
. . Y .
)Vn+1 = )Vn + (a]) n) AD)

The direct exploitation of relations in Eq. (25), gives the following explicit format for the response in the
time step (Appendix B).

t = (I— Dn+l)K[u]n+17 (26)
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(@) b

160 — analytic solution ( )

B ——— teta=0, time step = 0.005sec 1607 analytic solution
120 - @- teta=05, timestep =0,005sec g - —C&— teta=0, time step = 0.0005 sec
120 *\ - @- - teta=0.5, time step = 0.0005 sec
— 80—+
© — 80 \
s g ‘
— E 4
T 40+ =~ 40
0 0 —
-40 -40
0.000 0001 0002 0.003 0.004 0.005 0.000 0001 0002 0.003 0004 0.005
[u [mm] [ [mm]

Fig. 7. Time-dependent damage interface model. Comparison between analytic solution and numerical time integrated pure-mode
response. Imposed displacement discontinuity velocity v = 0.1 mm/s: (a) nine time steps and (b) 90 time steps.

where
D,.1 =D, + At (1'),1 + JABAY + mu&éin) : (27a)
A\ . T . T
A= I—ArﬂC@ : ﬁz(i—g ) , Cz@—? ) : (27b,¢)

In the present case, the derivation of the tangent matrix is not straightforward; its expression is given by
the following equation:

d ! oY, \ ' oY
Kr = ( b1 ) = | I-D,. 1)K —Aw( ias ) AB( dax ) : (28)
oful,., oful, ., Oful,
A comparison between the numerically integrated response of the damage interface model and the
analytical response of Section 3.2, is shown in Fig. 7 for the case N = 1. In Fig. 7a, a time step At = 0.005 s

is used, which corresponds to about 1/9 of the critical time step; in Fig. 7b a time step 10 times smaller is
used. From Fig. 7a, the advantage of making use of a mid-point approximation is evidenced.

4.3. Models behaviour and comparisons

A parametric study concerning the behaviour of the two proposed interface models is presented here; the
results are obtained by means of the numerical integration procedures described in the Sections 4.1 and 4.2.
If not specified differently, the set of parameters used for the two models are those of Sections 3.1 and 3.2,
apart from the exponent N, which is now taken N = 10 in both cases.

The results concerning the behaviour of the viscoplastic model are shown in Figs. 8-12.
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Fig. 8. Viscoplastic interface model: response in pure mode at varying displacement discontinuity velocity.

In Fig. 8, the pure mode response at varying imposed displacement discontinuity velocity is shown. By
comparing this figure with Fig. 4a, obtained analytically for N = 1, it can be observed that with N = 10, the
sensitivity to the value of imposed velocity is strongly reduced.

Fig. 9a—c concerns the pure-mode response at varying parameters /4, y and N, respectively, for an im-
posed displacement discontinuity velocity v = 0.1 mm/s. As already shown by Fig. 4b, the softening effect
increases at increasing parameter /; y and N, which govern the viscoplastic evolution law influence the value
of fracture energy at fixed velocity.

Fig. 10a—c shows the difference in the model response for pure mode I and pure mode II. By imposing the
cyclic displacement discontinuity history of Fig. 10a, the response in mode I is as in Fig. 10b, where the
unilateral effect for negative values of traction is put in evidence, while the response in mode II is that in
Fig. 10c.

For the models under discussion it is interesting to show the response under mixed-mode conditions.
For the viscoplastic model, this is done in Fig. 11. Mixed-mode conditions have been obtained by ap-
plying monotonically increasing displacement discontinuity histories both in direction 1 (mode II) and in
direction 3 (mode I) with a displacement discontinuity velocity in direction 3 fixed to the value
v; = 0.1 mm/s and different velocities in direction 1. In the figure, only the behaviour in direction 3 is
shown at varying value of velocity v, i.e. at varying mixity ratios. It can be appreciated from Fig. 11 that
there is an increasing negative interaction effect at increasing mixity ratio; this and other items related to the
behaviour of interface models in mixed-mode conditions have been discussed in Allix and Corigliano
(1996).

As already observed, the fracture energy is a fundamental parameter for the interface model. In the
present time-dependent context, it is in particular important to study the variation of the fracture energy
with the imposed displacement discontinuity velocity. This is done in Fig. 12, where the fracture energy G,
is plotted versus the imposed displacement discontinuity velocity for the two values N =1 and N =10 in a
semi-logarithmic diagram. The plots in Fig. 12 confirm what was already observed from Fig. 4a: when
N =1 the variation of fracture energy is extremely rapid.

Figs. 13-17 show the response of the time-dependent damage model, similar to Figs. 8—12 relevant to the
viscoplastic model. Comments analogous to those already done with reference to Figs. 8-12 still apply. The
main qualitative difference between the two models concerns the response to cyclic loading, shown in
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Fig. 15a—c. From Fig. 15b, the unilateral effect can still be appreciated, while residual displacement dis-
continuities are obviously absent.

5. Finite element formulation

Interface models, as those discussed in Sections 2—4, can be introduced in a finite element formulation in
order to obtain a numerical model of the structure or material under consideration.

A possible scheme, adopted here, is that of an elastic continuum Q with non-linear interfaces I' (Bolzon
and Corigliano, 1997); in this case, the material non-linearities are all concentrated along the interfaces
whose behaviour is governed by an interface model. This schematisation applied to delamination consists in
considering elastic layers separated by non-linear interfaces.
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After space and time discretisation, the equilibrium conditions at time instant t,,; can be formally
written as

SQUn+l + / B;tn+l dr = Pn+17 (29)
r

where Sy, is the elastic stiffness matrix of the continuum part of Q (the layers in a laminate), B; represents
the operator which relates interface displacement discontinuities [u],,, to the global nodal displacement
vector U, , while P, are equivalent nodal loads.

The global non-linear equilibrium equation (29) must be solved at each time step; the non-linearity
comes from the non-linear dependence of the interface tractions t,,; on the displacement discontinuities
[u],,, as governed by the interface model numerically integrated in time. Typically Eq. (29) can be solved by
means of the Newton—Raphson iterative method; at each iteration the following linear system of equations
in the unknown U’ must be solved having determined all the quantities at iteration i:
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Matrix Sirn . defined above is the contribution to the global tangent matrix deriving from the interfaces.

In order to compute S}, |, the material tangent matrix relevant to the interface model must be computed,
as done in Sections 4.1 (Eq. (23a)) and 4.2 (Eq. (28)) for the viscoplastic and time dependent damage
models, respectively.

It is interesting to note that, in the case of the viscoplastic model of Section 4.1, the tangent matrix (Eq.

(23a)) does not change during the iteration process because it depends on quantities computed at the be-
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Fig. 13. Time-dependent damage interface model: response in pure mode at varying displacement discontinuity velocity.

ginning of the step, moreover the traction vector is explicitly computed (Eq. (22)). These circumstances
transform the Newton—Raphson procedure in a simple explicit computation for the step, without any it-
eration:

(So +Sr)AU =P, — /QBga,, dQ — /FBitn dr + /FB} Aq,dr, (31a)

S, = / B/K'Bdr. (31b)
r

The numerical finite element simulations presented in Section 6 are based on the above procedure; use is
made of plane strain four node isoparametric elements, coupled with four nodes interface elements.

6. Numerical applications

In this section, numerical simulations of double cantilever beam (DCB) and end notched flexure (ENF)
tests are presented (Fig. 18), based on the viscoplastic interface constitutive law of Section 2.1 and the finite
element model of Section 5. Analogous simulations carried out by means of the damage law of Section 2.2,
together with a detailed discussion concerning the numerical implementation and the comparison between
experiments and simulations will be presented in a forthcoming paper.

6.1. Double cantilever beam simulation

The DCB specimen considered is shown in Fig. 19a, its dimensions are assumed as follows:
L=20mm, H=1mm, a)=5mm,

where @y denotes the initial crack length.

The response of the specimen at imposed opening displacement velocity v = 1 mm/s is first computed at
varying mesh size. The four meshes of Fig. 19 are considered with the interface viscoplastic model of
Section 2.1 and the interface model parameters used in Section 4.3. The two arms of the specimen are
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assumed to have an elastic, transversely isotropic behaviour governed by the following parameters in the
reference frame of Fig. 19

E = 84766 MPa, E33 = 0.1E11,
G13 = 1000 MPa, Vi3 = 0035, V3 = 0.35.

The above parameters have been found on the bases of experimental results used for the comparison with
numerical simulations in previous papers of the first author (Corigliano et al., 1997a,b, 1998), they are used
here for numerical simulations only.

The four meshes used have elements measuring in the crack propagation direction 1, 0.5, 0.25, 0.125 mm,
respectively, with the element-length/beam-length ratios L,/L marked in the figure caption.
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In Fig. 20a, b, the response of the DCB obtained with the four meshes is shown in terms of the load-
displacement plots and of the interlaminar traction f; along the interface. From a combined examination of
the two figures, it can be concluded that the strong over-estimation of the response obtained with the
coarser mesh is due to the fact that the interlaminar stress distribution is not correctly reproduced, in
particular the high stress concentration at the crack tip. The necessity to use small elements when the in-
terface schematisation used is well known (Schellekens and De Borst, 1993) and can be considered as one of
the main drawbacks related to its application.

The response of the DCB specimen is then computed at varying imposed opening displacement velocity,
with the finer mesh among those of Fig. 19. The results in term of the displacement—load plots are shown in
Fig. 21. The plots in Fig. 21 increase with the imposed velocity, this is a consequence of the increase of
fracture energy as given by the interface models.

As shown in the above example, mesh dependence is shown in the response of the specimen until when
the element size is small enough to correctly reproduce the interlaminar stresses. For element size smaller
than the above one, no pathological mesh dependence is shown.
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Fig. 17. Time-dependent damage interface model: fracture energy as a function of the imposed displacement discontinuity.

The important issue of pathological mesh dependence remains an open question for three-dimensional
fracture phenomena described through interface elements.

6.2. End notched flexure simulation

The ENF specimen (Fig. 18b) considered for the simulation has the same dimensions of the DCB
specimen analysed in the previous Section 6.1. The specimen is simply supported and the load is applied
vertically downward at the centre of the upper arm. It is important to note that the simulation of the ENF
test can be carried out due to the fact that a unilateral effect is introduced in the interface model, which
avoids the superposition of the two arms.
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Fig. 18. Interlaminar fracture specimens: (a) DCB and (b) ENF.
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(©

Fig. 19. Viscoplastic interface model — response of a DCB test at varying mesh size. The three meshes used: (a) L,/L = 0.05, (b)
L,/L =0.025, (c) L,/L = 0.0125, (d) L,/L = 0.00625.
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The viscoplastic interface model is used for the simulation with the same set of parameters of Section 4.3.
The behaviour of the two arms of the specimen is assumed to be elastic, transversely isotropic as in the
previous Section 6.1.

The response of the specimen at varying velocity of imposed displacement in the loaded point is shown in
Fig. 22a. As in the DCB simulations, it can be appreciated the increase with velocity of the energy dissi-
pated during crack propagation, due to the increase of fracture energy as modelled by the interface law. It is
also worth noting that the response of the specimen can be divided in three main parts: an elastic part with
increasing load, a softening branch corresponding to crack propagation, a part with increasing load cor-
responding to the response after the delamination crack has passed the beam half. A simple explanation of
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Fig. 22. Viscoplastic interface model — displacement-load plots in a ENF test: (a) at varying imposed velocity of displacement and (b)
at varying initial crack length for imposed displacement velocity v = 1 mm/s.

this behaviour can be given on the basis of a linear elastic fracture mechanic model of the ENF test. This
has been done in Allix et al. (1995) starting from the Griffith condition for crack propagation expressed in
terms of the beam compliance. In a few words, it can be said that the response of the specimen have as a
limit the linear elastic response of two superposed beams (the two arms of the specimen) without inter-
laminar connections, this is reached when complete delamination in mode II has occurred.

The ENF specimen is then analysed at varying initial crack length. As already discussed in Allix et al.
(1995) and Allix and Corigliano (1996), the response of the specimen can be unstable also when the dis-
placement is imposed (snap-back response) if initial crack length is sufficiently small. In Fig. 22b, the load—
displacement plots, obtained for a velocity of imposed displacement v =1 mm/s, show that when
ap/L < 0.35 the response tends to show snap-back; this is in agreement with the critical theoretical value
ap/L = 0.347 found in Allix et al. (1995).

6.3. Double cantilever beam test: comparison between numerical and experimental responses

The numerical model proposed in Sections 2-5 for the simulation of time-dependent interlaminar
fracture is here applied to the simulation of a DCB carbon fibre-Poly Ether-Imide (PEI) composite spec-
imen.

Frassine et al. (1993, 1996) and Frassine and Pavan (1995) obtained results concerning the behaviour of
DCB specimens at varying velocity and temperature. They considered 16-ply unidirectional laminates 0.3
mm thick with PEI resin and carbon fibres and carried out interlaminar fracture tests on DCB specimens 20
mm wide and 170 mm long, having an initial crack length of 60 mm, following the ESIS protocol (Davies,
1992). The thickness varies between 3.6 and 4.2 mm, depending on the moulding conditions. The range of
crack propagation velocities considered was such that dynamic crack effects were negligible.

By using for composites the time-temperature equivalence postulate valid for most polymers (Ferry,
1980), they obtained the plots of the fracture toughness G. of the composite and of the neat resin shown in
Fig. 23 (Corigliano et al., 1998). From Fig. 23, an increase of the composite fracture toughness with crack
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Fig. 23. Fracture toughness of the PEI matrix and of the composite versus crack speed master curve at 7, = 23°C. The line represent
power-law least square fitting. Experimental results from Frassine and Pavan (1995).

propagation velocity can be appreciated, while no clear dependence of the neat resin fracture toughness
with the crack velocity can be observed.

The above experimental results have motivated the application of time-dependent interface models for
the simulation of the DCB specimen at varying velocity (Corigliano et al., 1997a,b, 1998). A simulation of
the test conducted by the above referenced authors is presented here in order to show the potentialities of
the numerical model proposed in the present paper.

The schematisation used for the DCB specimen is as that presented in Section 6.1, with the same para-
meters for the elastic arms. The viscoplastic interface model has been used with the following set of
parameters:

K =200000 N/mm’, a=1/60>mm*/N?> h=70mm"’,
y=7 N/mms, N = 16.

The above parameters have been identified, as suggested in (Corigliano et al., 1998), partially from the
properties of the neat resin and partially starting from a direct comparison of the numerical and experi-
mental load—displacement plots. More precisely, the interface elastic stiffness has been obtained starting
from the elastic modulus of the resin:

gg, E =3000 MPa, e =0.015 mm,

where e is the thickness attributed to the interlaminar resin-rich region where the delamination process
takes place. The parameter a has been linked to the value #, of traction corresponding to the onset of
yielding in pure mode of the resin

thy = 60 MPa.

a = %,

As far as the parameters 4, y and N are concerned, they have been identified by directly matching the
numerical and experimental global load—displacement plots for an imposed opening displacement velocity
v = 500 mm/min.
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Fig. 24. DCB specimen. Experimental versus numerical responses: (a) load—displacement and (b) fracture length versus time.

In Fig. 24a and b, the numerical and experimental responses are compared in terms of the load-
displacement plot and the fracture length versus time plot, for two opening displacement velocities.

As can be seen from the above results, the comparison between simulation and experiments is satis-
factory and confirms the potentiality of the proposed models.

A further discussion on experimental evidences concerning time-dependent delamination and on the use
of interface model of the kind proposed in Section 2 can be found in Corigliano et al. (1997a,b, 1998).

7. Closing remarks

In this paper, two time-dependent interface models have been proposed. The first one is viscoplastic with
the following main characteristics: irreversible viscoplastic displacement discontinuities; evolution law of
the Perzyna kind, unilateral effect in the direction normal to the interface; softening behaviour in order to
simulate interface degradation.

The second interface model proposed is time-dependent elastic-damage, its main characteristics are as
follows: anisotropic model with three damage variables, unilateral effect in the direction normal to the
interface; evolution law of damage variables governed by a potential function.

The two models proposed have been discussed in details, and the analytical responses in pure mode
(mode I, 1T or IIT) under monotonic loading conditions of both models have been derived for particular
values of the model parameters. A time integration procedure of the Runge—Kutta kind has been applied
for the two models for the solution of a single step in non-linear analyses. The formulation of a finite ele-
ment non-linear analysis has also been discussed.

The potentialities of the proposed formulation have been shown through the finite element numerical
simulation of interlaminar fracture specimens and the comparison between numerical and experimental
results.
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The results presented in the paper are part of a work in progress; issues, which are now being dealt with,

are the following:

e Improved time step integration and interface element formulation in order to reduce computing time.
e Parameter identification of the interface models. This is a crucial point whenever complicate non-linear

constitutive models and in particular interface models are considered.

e Extensive experimentation, in order to put in evidence when the delamination phenomenon is truly time

dependent.

e Study of interaction among different causes of rate dependence and non-linearity: viscosity of layers and/

or of the process zone, damage processes in the layers, etc.
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Appendix A. Derivation of Eqgs. (22) and (23)

The equations governing the non-linear phase for the viscoplastic interface model are given in Eq. (21)

and re-written here:
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By combining relations (A.3) and (A.5), it is possible to obtain an expression for the increment A/, which

can be substituted in (A.4) in order to obtain
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From the definition (A.6b) of 4, it results that
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From Eq. (A.7), one obtains
Al]'"® = ABAt + AtAC/,. (A.10)

Now, combining Eqgs (A.10), (A.2) and (A.1), the following expression for the increment of traction in
the step is arrived at:

tn+1 = tn + K:;A[ll] - Aqn; (All)
where
K = (I+AKAB) 'K,  Aq, = AKK: ([ I 4 At9AC, ) (A.12)

Matrices B and C can be obtained by computing the derivatives of function f(Eq. (4)) and introducing them
in the expressions below:
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Appendix B. Derivation of Egs. (26)—(28)

The equations governing the non-linear phase for the elastic-damage interface model are given in Eq.
(25) and re-written here:

t,y = (1 —-D,.)Ku], ,, D=diag(D;), K=diag(K;), i=1,2,3, (B.1)
D, =D, + At((1 —9)D, + 9D, ), (B.2)
mit = Iy + AT((1 = 0y + hnsr), 9 €10,1], (B.3)

) A, (B.4)

! oD
)AY (m

oD
Dn+1 D + <6Y
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) AD, (B.5)

N &
/Ln+l:/Ln+ @n

3
D=3/, )", i=123 Ji=,|> D (B.6a, b)
i=1

By combining relations (B.3) and (B.5), it is possible to obtain an expression for the increment A4 which can
be substituted in (B.4) in order to obtain

T . T . T . T
aD oA . oD oD .
From the definition (B.6a,b) of )l, it results that
. T .
a DT
Gy D, (B.8)
oD | P8

By defining

. -1 . T . T
" . D! ) .. (oD
From Eq. (B.7), one obtains
AD = ABAY + AtAC/,. (B.10)

Now, combining Egs. (B.10) and (B.2) and (B.1), the following expression for the increment of traction in
the step is arrived at:

"+1 (I D71+1)K[ }n+1a (Blla)

D,.; =D, + At(D, + VABAY + VATAC, ). (B.11b)

Matrices B and C can be obtained by computing the derivatives of function / (Eq. (9)) and introducing
them in the expressions below:

~ [ of ~ (0 ~ [ of
(&) (%) 7 ()
B=N/OLA" 0(5) n(E) B(%) | (B.12)
~ [ of ~ (0 ~ [ of
ACIRACIAC

:N(/;(Ya}v))jvilil[f’l ”)72 773] (B~13)

The tangent matrix can be obtained starting from Eq. (B.11); it results that

G () (rmn o (B (32))
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where the matrix (0Y,;/0[u],, ) has the simple expression
aYn+l
Olu]

n+1

= diag[K;[u,], i=1,2,3. (B.15)
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